DFG
Sfb 787GaN-basierte Einzel-
photonenemitter und VCSELTP C4Alois Krost und Jürgen ChristenOvG MD

Ziele

- Wachstum von riss- und spannungsfreien InAIN/AIGaN VCSEL-Strukturen
 - Struktur mit Gruppe-III-basierten unteren und Oxid-basierten oberen BRAGG-Spiegeln
 - InGaN/GaN MQWs mit pn-Übergang und Tunnelbarriere als aktives Medium
 - Photon-Exziton-Kopplung, PURCELL-Effekt, cavity-polariton
 - elektrisch betriebene blaue VCSEL und Einzelphotonenemitter
- Herstellung p-leitender AlGaN-Schichten und Fertigung von AlGaN/GaN

Epitaktische BRAGG-Spiegel

schematischer Aufbau

- Wachstum in AIXTRON AIX 200/4 RF-S Reaktor
- Effizienter In Einbau in AIN nur bei Temperaturen von 700 - 900 °C und unter N₂-Fluss
- AllnN Wachstum bei geringen Drücken (70 mbar) und
 V-III Verhältniss von ~ 200

oberen BRAGG-Spiegeln für den UV-Spektralbereich

- nitridische Quantenpunkte als aktives Medium für single dot emitter

Dielektrische und hybride VCSEL-Strukturen

VCSEL mit dielektrischen BRAGG-Spiegeln

Verteilung der Emissionswellenlänge der Ausgangsstruktur

Struktur mit epitaktischem unteren und dielektrischem oberen BRAGG-Spiegel

the second se	And in case of the local division of the loc	other designation of the local division of the local division of the local division of the local division of the	our statement of the local division of the	COLUMN TWO IS NOT	Contraction of the local division of the loc

Wavelength (nm) 450 400 350

Energy (eV)

strain engineering

Erste Ergebnisse

Dispersion des cavity-polaritons

Winkelauflösende Messungen (orts-integral)

Mikroskopische winkelauflösende Messungen

- im Aufbau befindliche Apparatur:
- Anregung durch REM bzw. HeCd-Laser
 5 K < T < 300 K

Optische Mikro- / Nano-Charakterisierung

Kathodolumineszenz

Mikroskopische PL- / EL- Charakterisierung

- → RABI-Splitting
- Kopplungskonstante

Kooperationen im Sfb

A1 (Kneissl, Tränkle) Nitrid-basierte grüne Streifenlaser
A4 (Lehmann, Dähne) strukturelle Charakterisierung mittels TEM und STM
A5 (Hoffmann, Bimberg) Berechnung der elektronischen Zustände in nitridischen QDs
A6 (Thomsen, Hoffmann) Ramanstreuung und resonante ps-Spektroskopie
B1 (Knorr) Dephasierung und B2 (Schöll) Dynamik von Emissionsprozessen
B3 (Schmidt) und B4 (Bandelow, Schmidt, Mielke) Simulation der optischen bzw. elektronischen Eigenschaften von VCSEL-Strukturen
C2 (Benson) Korrelationsmesssungen an Einzelphotonenemittern
C3 (Weyers, Kneissl) UV Emitter